

# **AksIM-2** BiSS C Register Access

**Abstract:** The BiSS C interface implemented in AksIM supports bidirectional communication in register access mode. The readhead is user programmable and has 4 kB of user memory. The implementation is compliant with BiSS (also Standard Encoder Profile known as "BP3"), which is used to group linear and rotary encoders. Details on BiSS register access and BP3 can be found on the **BiSS website**.

**User implementation:** The user can implement bidirectional BiSS in their own hardware according to the BiSS documentation provided by iC-Haus. The user can also use the iC-Haus chip iC-MB4, which translates the high-level commands on the SPI bus into BiSS. The easiest way is to use the interface E201-9B from RLS including the corresponding software.

## **Related products**



**<u>AksIM-2</u>** off-axis absolute magnetic encoder



E201-9B USB interface

## BiSS memory map for AksIM-2

| Bank    | Address     | Data Type | Access | Description                                                                            |
|---------|-------------|-----------|--------|----------------------------------------------------------------------------------------|
|         | 0x00 - 0x03 | U32       | R/W    | Position offset                                                                        |
|         | 0x04 - 0x07 | U32       | R/W    | Position filter value                                                                  |
|         | 0x08 - 0x0B | U32       | R/W    | Position filter speed                                                                  |
|         | 0x0C – 0x0F | U32       | R/W    | Velocity filter value                                                                  |
|         | 0x10 - 0x13 | U32       | R/W    | Velocity filter speed                                                                  |
|         | 0x14 - 0x17 | U32       | R/W    | Multiturn counter preset                                                               |
|         | 0x18        | U8        | R/W    | Multiturn error arc length                                                             |
|         | 0x19 - 0x1A | U16       | R/W    | Partial arc length for self-calibration                                                |
|         | 0x1B        | U16       | R      | Ring eccentricity shift from rotation axis centre                                      |
|         | 0x1D        | U16       | R      | Ring eccentricity angle (phase)                                                        |
|         | 0x1F        | S16       | R      | Readhead radial shift (positive = outside)                                             |
|         | 0x20 – 0x2B | U8        | R      | Reserved                                                                               |
|         | 0x2C – 0x2D | U16       | R      | Persistent encoder status (see chapter <mark>»Encoder</mark><br>operating parameters«) |
| 0       | 0x2E        | U8        | R/W    | Write protect lock                                                                     |
|         | 0x2F - 0x30 | U16       | R      | FW major version                                                                       |
|         | 0x31 - 0x32 | U16       | R      | FW minor version                                                                       |
|         | 0x33 - 0x34 | U16       | R      | Protocol version                                                                       |
|         | 0x35 - 0x36 | U16       | R      | Revision number                                                                        |
|         | 0x37        | U8        | R      | Checksum of bank 8                                                                     |
|         | 0x38        | U8        | R      | Checksum of bank 9                                                                     |
|         | 0x39        | U8        | R      | Checksum of bank 10                                                                    |
|         | 0x3A        | U8        | R      | Checksum of bank 11                                                                    |
|         | 0x3B        | U8        | R      | Checksum of bank 12                                                                    |
|         | 0x3C        | U8        | R      | Checksum of bank 13                                                                    |
|         | 0x3D        | U8        | R      | Checksum of bank 14                                                                    |
|         | 0x3E        | U8        | R      | Checksum of bank 15                                                                    |
|         | 0x3F        | U8        | R      | Checksum of bank 0                                                                     |
| 1 - 7   | 0x00 – 0x3F | U8        | R      | Reserved                                                                               |
| 8       | 0x00 – 0x3F | S8        | R      | Error Map [0 - 63]                                                                     |
| 9       | 0x00 – 0x3F | S8        | R      | Error Map [64 - 127]                                                                   |
| 10      | 0x00 – 0x3F | S8        | R      | Error Map [128 - 191]                                                                  |
| 11      | 0x00 – 0x3F | S8        | R      | Error Map [192 - 255]                                                                  |
| 12      | 0x00 – 0x3F | S8        | R      | Error Map [256 - 319]                                                                  |
| 13      | 0x00 – 0x3F | S8        | R      | Error Map [320 - 383]                                                                  |
| 14      | 0x00 – 0x3F | S8        | R      | Error Map [384 - 447]                                                                  |
| 15      | 0x00 – 0x3F | S8        | R      | Error Map [448 - 511]                                                                  |
| 16      | 0x00 – 0x3F | U8        | R      | BiSS EDS common part                                                                   |
| 17      | 0x00 – 0x3F | U8        | R      | BiSS EDS standard encoder profile                                                      |
| 18 - 23 | 0x00 – 0x3F | U8        | R      | Reserved                                                                               |
| 24 - 87 | 0x00 – 0x3F | U8        | R/W    | User memory                                                                            |

# **CRLS**<sup>®</sup>

| Bank          | Address     | Data Type | Access | Description                                                 |
|---------------|-------------|-----------|--------|-------------------------------------------------------------|
|               | 0x40        | U8        | R/W    | Bank select                                                 |
|               | 0x41        | U8        | R      | EDS bank                                                    |
|               | 0x42 - 0x43 | U16       | R      | Profile ID                                                  |
|               | 0x44 – 0x47 | U32       | R      | Serial number (encoded)                                     |
|               | 0x48        | U8        | R/W    | Key register                                                |
|               | 0x49        | U8        | R/W    | Command register                                            |
|               | 0x4A – 0x4B | U16       | R      | Encoder status (see chapter »Encoder operating parameters«) |
|               | 0x4C – 0x4D | S16       | R      | Sensor temperature in °C                                    |
| Direct access | 0x4E – 0x4F | U16       | R      | Signal level                                                |
|               | 0x50 – 0x51 | S16       | R      | Rotational speed in RPM                                     |
|               | 0x52        | U8        | R      | Self-calibration status                                     |
|               | 0x5C – 0x61 | U8        | R      | RLS serial number                                           |
|               | 0x62 – 0x63 | U8        | R      | Reserved                                                    |
|               | 0x64 - 0x73 | U8        | R      | RLS part number                                             |
|               | 0x74 – 0x77 | U8        | R      | Reserved                                                    |
|               | 0x78 – 0x7D | U48       | R      | Device ID                                                   |
|               | 0x7E – 0x7F | U16       | R      | Manufacturer ID                                             |

U16, U32, U48 data is stored in Big Endian format (highest-value byte at the lowest-value address).

## BiSS EDS common part

| Address     | Symbol   | Description                                                                   | Data type | Unit   | Value   |
|-------------|----------|-------------------------------------------------------------------------------|-----------|--------|---------|
| 0x00        | EDS_VER  | EDS version                                                                   | U8        | -      | 1       |
| 0x01        | EDS_LEN  | EDS length                                                                    | U8        | banks  | 2       |
| 0x02        | USR_STA  | Bank address USER start                                                       | U8        | -      | 24      |
| 0x03        | USR_END  | Bank address USER end                                                         | U8        | -      | 87      |
| 0x04        | TMA      | Min. permitted clock period                                                   | U8        | 1 ns   | 200     |
| 0x05        | TO_MIN   | Min. BiSS timeout                                                             | U8        | 250 ns | 52      |
| 0x06        | TO_MAX   | Max. BiSS timeout                                                             | U8        | 250 ns | 60      |
| 0x07        | TOS_MIN  | Min. BiSS timeout_S                                                           | U8        | 25 ns  | 0       |
| 0x08        | TOS_MAX  | Max. BiSS timeout_S                                                           | U8        | 25 ns  | 0       |
| 0x09        | TCLK_MIN | Min. sampling period adaptive timeout                                         | U8        | 25 ns  | 0       |
| 0x0A        | TCLK_MAX | Max. sampling period adaptive timeout                                         | U8        | 25 ns  | 0       |
| 0x0B        | TCYC     | Min. cycle time                                                               | U8        | 250 ns | table A |
| 0x0C        | TBUSY_S  | Max. processing time SCD                                                      | U8        | 250 ns | 0       |
| 0x0D        | BUSY_S   | Max. processing time SCD in clocks                                            | U8        | TMA    | 13      |
| 0x0E - 0x0F | PON_DLY  | Max. "power on delay" until control communication is available                | U16       | 1 ms   | 60      |
| 0x10        | DC_NUM   | Number of data channel in this device                                         | U8        | -      | 1       |
| 0x11        | SL_NUM   | Area of validity for this EDS<br>(number of slave addresses)                  | U8        | -      | 1       |
| 0x12        | SL_OFF   | Memory location for this EDS<br>(slave ID within this device)                 | U8        | -      | 0       |
| 0x13        |          | Reserved                                                                      | U8        |        | 0       |
| 0x14        | BANK1    | Bank address for content description of data channel 1 (Profile EDS)          | U8        | -      | 17      |
| 0x15        | DLEN1    | Data length for data channel 1                                                | U8        | bit    | table A |
| 0x16        | FORMAT1  | Data format for data channel 1                                                | U8        | bit    | 2       |
| 0x17        | CPOLY1   | CRC polynomial (8:1) for data channel 1                                       | U8        | _      | 0x21    |
| 0x18 - 0x33 |          | Reserved                                                                      | U8        |        | 0       |
| 0x34        | BC_OFF   | Bus coupler control location for this device<br>(slave ID within this device) | U8        | -      | 0       |
| 0x35 – 0x3E |          | Reserved                                                                      | U8        | -      | 0       |
| 0x3F        | CHKSUM   | Checksum (sum of all bytes within this bank)                                  | U8        | -      | xx      |

U16 data is saved as a Big Endian (highest-value byte at the lowest-value address).

#### Table A

|               | Type of encoder |           |           |           |           |           |           |           |
|---------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| EDS parameter | 17 bit ST       | 17 bit MT | 18 bit ST | 18 bit MT | 19 bit ST | 19 bit MT | 20 bit ST | 20 bit MT |
| DLEN1         | 19              | 35        | 20        | 36        | 21        | 37        | 22        | 38        |
| тсүс          | 104             | 116       | 104       | 120       | 108       | 120       | 108       | 120       |

ST - Single turn

MT - Multiturn



## BiSS EDS standard encoder profile

| Address     | Symbol  | Description                                                                    | Data type | Unit   | Value     |
|-------------|---------|--------------------------------------------------------------------------------|-----------|--------|-----------|
| 0x00        | BP_VER  | BiSS profile 3 version                                                         | U8        | -      | 1         |
| 0x01        | BP_LEN  | Length of this profile                                                         | U8        | banks  | 1         |
| 0x02 - 0x03 | BP_ID   | Profile identification BP3 (content also available in addresses 0x42 and 0x43) | U16       | -      | table B   |
| 0x04        | FB1     | Feedback bit 1 (nError = 1)                                                    | U8        | -      | 1         |
| 0x05        | FB2     | Feedback bit 2 (nWarning = 2)                                                  | U8        | -      | 2         |
| 0x06        | PON_PDL | Max. "power on delay" until position data is available                         | U8        | ms     | 60        |
| 0x07        |         | Reserved                                                                       | U8        | -      | 0         |
| 0x08        | EN_TYP  | Encoder type (rotary = 0)                                                      | U8        | -      | 0         |
| 0x09        | POS_NUM | Position value (1 position)                                                    | U8        | -      | 1         |
| 0x0A        | MT_LEN  | Data length MULTITURN                                                          | U8        | bit    | table B   |
| 0x0B        | MT_FMT  | Data format MULTITURN                                                          | U8        | -      | table B   |
| 0x0C        | CO_LEN  | Data length COARSE                                                             | U8        | bit    | 0         |
| 0x0D        | CO_FMT  | Data format COARSE                                                             | U8        | -      | 0         |
| 0x0E        | FI_LEN  | Data length FINE                                                               | U8        | bit    | table B   |
| 0x0F        | FI_FMT  | Data format FINE                                                               | U8        | -      | 0         |
| 0x10 – 0x13 | MT_CNT  | Number of distinguishable revolutions                                          | U32       | count  | table B   |
| 0x14 – 0x17 | SIP_CNT | Number of signal periods per revolution                                        | U32       | PPR    | 1         |
| 0x18 - 0x1B | SIP_RES | Resolution factor per signal period (LSB of interpolation)                     | U32       | count  | table B   |
| 0x1C – 0x1F | CPOLY   | CRC polynomial (32:1 of 0x43)                                                  | U32       | -      | 0x21      |
| 0x20 – 0x23 | CSTART  | CRC start value                                                                | U32       | -      | 0         |
| 0x24 – 0x25 | ABS_ACU | Absolute accuracy                                                              | U16       | LSB/2  | table C   |
| 0x26 – 0x27 | REL_ACU | Relative accuracy                                                              | U16       | LSB/2  | 0         |
| 0x28 – 0x29 | SPD_ACU | Angular speed depending accuracy                                               | U16       | LSB/2  | 0         |
| 0x2A – 0x2B | HYST    | Hysteresis                                                                     | U16       | LSB/2  | 0         |
| 0x2C – 0x2D | SPD_MAX | Max. revolution speed                                                          | U16       | 1/min  | 10000     |
| 0x2E – 0x2F | ACC_MAX | Max. revolution acceleration                                                   | U16       | 1/min2 | 0         |
| 0x30 – 0x31 | TMP_MIN | Min. operating temperature                                                     | U16       | К      | 243 (233) |
| 0x32 – 0x33 | TMP_MAX | Max. operating temperature                                                     | U16       | К      | 358 (378) |
| 0x34 – 0x35 | VLT_MIN | Min. operating voltage                                                         | U16       | mV     | 4500      |
| 0x36 – 0x37 | VLT_MAX | Max. operating voltage                                                         | U16       | mV     | 5500      |
| 0x38 – 0x39 | CUR_MAX | Max. current consumption                                                       | U16       | mA     | 150       |
| 0x3A – 0x3E |         | Reserved                                                                       | U8        |        | 0         |
| 0x3F        | CHKSUM  | Checksum (sum of all bytes within this bank)                                   | U8        | -      | XX        |

U16, U32 data is stored in Big Endian format (highest-value byte at the lowest-value address).

#### Table B

|              |        | EDS BP3 parameter |        |        |        |         |
|--------------|--------|-------------------|--------|--------|--------|---------|
| Encoder type | BP_ID  | MT_LEN            | MT_FMT | FI_LEN | MT_CNT | SIP_RES |
| 17 bit ST    | 0x6213 | 0                 | 0      | 17     | 0      | 131072  |
| 17 bit MT    | 0x6223 | 16                | 1      | 17     | 65536  | 131072  |
| 18 bit ST    | 0x6214 | 0                 | 0      | 18     | 0      | 262144  |
| 18 bit MT    | 0x6224 | 16                | 1      | 18     | 65536  | 262144  |
| 19 bit ST    | 0x6215 | 0                 | 0      | 19     | 0      | 524288  |
| 19 bit MT    | 0x6225 | 16                | 1      | 19     | 65536  | 524288  |
| 20 bit ST    | 0x6216 | 0                 | 0      | 20     | 0      | 1048576 |
| 20 bit MT    | 0x6226 | 16                | 1      | 20     | 65536  | 1048576 |

#### Table C

|              | Singleturn resolution (bits) |     |     |     |
|--------------|------------------------------|-----|-----|-----|
| Encoder size | 17                           | 18  | 19  | 20  |
| 080          | 34                           | 67  | 135 | 270 |
| 064          | 37                           | 73  | 146 | 293 |
| 053          | 42                           | 83  | 167 | 334 |
| 049          | 41                           | 81  | 163 | Х   |
| 039          | 53                           | 107 | 214 | Х   |
| 029          | 55                           | 110 | Х   | Х   |

#### **Bank switching**

BiSS registers are grouped into the banks in size of 64 bytes. Each register in each bank can be accessed with the address from 0x00 to 0x3F. Before access to a certain bank, it has to be selected in the Bank select register, which is mapped to address 0x40. For further information on bank switching refer to documentation provided by iC-Haus.

#### **Read access**

All registers in AksIM memory are readable. Read access also supports sequential reading. It is possible to read up to 64 bytes forward from initialized read address. For detailed description on sequential read access refer to documentation provided by iC-Haus.

#### Write access

Writable registers in AksIM memory are presented in table "Memory map". All registers, including "user memory" can be write protected if write access is locked by the user, except of Bank select register. Sequential write access is only available in User memory banks, elsewhere it will be refused. For detailed description on sequential write access refer to documentation provided by iC-Haus.

# 

# **Encoder operating parameters**

| Address              | Data Type | Access | Description                                 |
|----------------------|-----------|--------|---------------------------------------------|
| 0x4A – 0x4B          | U16       | R      | Encoder status (see table below)            |
| 0x2C – 0x2D (Bank 0) | U16       | R      | Persistent encoder status (see table below) |
| 0x4C – 0x4D          | S16       | R      | Sensor temperature in °C                    |
| 0x4E – 0x4F          | U16       | R      | Signal level                                |
| 0x50 – 0x51          | S16       | R      | Rotational speed in RPM                     |
| 0x52                 | U8        | R      | Self-calibration status                     |

#### Encoder status (address 0x4A—0x4B)

| Detailed st | atus (part 1)                                                                                                                                 |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| b15         | Error - Multiturn counter mismatch. Encoder was rotated for more than ±90° during power off. Cycle the power to clear this error.             |  |  |  |
| b14         | Error - Signal amplitude too high. The readhead is too close to the ring or an external magnetic field is present.                            |  |  |  |
| b13         | Warning - Signal amplitude too high. The readhead is too close to the ring or an external magnetic field is pres-<br>ent.                     |  |  |  |
| b12         | Error - Magnetic sensor. Cycle power to the encoder.                                                                                          |  |  |  |
| b11         | Error - Sensor reading error, probably caused by electrical interference, ground loop or RFI.                                                 |  |  |  |
| b10         | Error - Encoder not configured properly.                                                                                                      |  |  |  |
| General sta | atus                                                                                                                                          |  |  |  |
| b9          | Error. If bit is set, position is not valid.                                                                                                  |  |  |  |
| b8          | Warning. If bit is set, encoder is near operational limits. Position is valid. Resolution and / or accuracy might be<br>lower than specified. |  |  |  |
| Error and W | /arning bits can be set at the same time; in this case Error bit has priority.                                                                |  |  |  |

The colour of the LED on the readhead housing indicates the value of the General status bits:

• Red = Error, • Orange = Warning, • Green = Normal operation, O No light = no power supply.

The warning or error status is more closely defined by the Detailed status bits.

| Detailed stat | tus (part 2)                                                                                                                                                                                                          |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b7            | Warning - Signal amplitude too high. The readhead is too close to the ring or an external magnetic field is pres-<br>ent.                                                                                             |
| b6            | Warning - Signal amplitude low. The distance between the readhead and the ring is too large.                                                                                                                          |
| b5            | Error - Signal lost. The readhead is out of alignment with the ring or the ring is damaged.                                                                                                                           |
| b4            | Warning - Temperature. The readhead temperature is out of specified range.                                                                                                                                            |
| b3            | Error - Power supply error. The readhead power supply voltage is out of specified range.                                                                                                                              |
| b2            | Error - System error. Malfunction inside the circuitry or inconsistent calibration data is detected. To reset the<br>System error bit try to cycle the power supply while the rise time is shorter than 20 ms.        |
| b1            | Error - Magnetic pattern error. A stray magnetic field is present or metal particles are present between the read-<br>head and the ring or radial positioning between the readhead and the ring is out of tolerances. |
| b0            | Error - Acceleration error. The position data changed too fast. A stray magnetic field is present or metal particles are present between the readhead and the ring.                                                   |

#### Persistent encoder status (address 0x2C - 0x2D in Bank 0)

This is similar to "Detailed status", but with the additional function that all detailed statuses are accumulated. Any error or warning displayed in Detailed Status during operation of encoder is copied into Persistent detailed status. Even if the value in the "Detailed status" only has a very short duration, the past statuses can be read from this Persistent register. The value is retained for as long as the power is present. Clearing is possible either by a power cycle or by sending Key and Command sequence (write 0xCD into register 0x48 and 0x62 into register 0x49).

#### Sensor temperature (address 0x4C—0x4D)

Temperature of the sensor in °C. This value is typically 10 °C to 15 °C higher than ambient. Tolerance of the readout is ±5 °C.

#### Signal level (address 0x4E—0x4F)

Signal level information can be used to calculate encoder ride height.

Value is proportional to the distance between the sensor and the ring. To calculate the actual distance use the following formula: Ride height =  $K \times Ln$  (SignalLevel) + N

Calculated ride height has tolerance of  $\pm 20 \ \mu m$ .

K and N are selected depending on the encoder size.

| Encoder size  | К      | N   |  |
|---------------|--------|-----|--|
| 022, 029      | -95.49 | 977 |  |
| 039, 049      | -83.56 | 865 |  |
| 053, 064, 080 | -71.62 | 748 |  |

#### Rotational speed (address 0x50—0x51)

Encoder rotational speed in RPM.

#### Self-calibration status (address 0x52)

See chapter **<u>Self-calibration</u>** on page 10.

# 

# **AksIM-2 programming**

Position offset (encoder zero position), multiturn counter (optional) and register write protection can be programmed to the AksIM readhead. Additional to this, the readhead can be self-calibrated or reset to the factory defaults. Numbers written into registers do not take effect until saved to non-volatile memory. Exception is Multiturn counter value which is effective immediately.

#### Position offset (encoder zero position)

Position offset is mapped to the registers 0x00, 0x01, 0x02, 0x03 of bank 0 in a big-endian format. User must first write separate bytes of a new position offset in counts to these addresses. Afterwards, they can be read to verify the proper write operation. At this moment, new position offset is not active yet. To validate it, user must first unlock the command register by writing the KEY. Next register access must be a write of the Command for saving programmed data to a non-volatile memory.

KEY: value 0xCD to address 0x48

Command for saving programmed data to a non-volatile memory: ASCII 'c' (0x63) to address 0x49

Saving parameters to non-volatile memory takes 80 ms. During this time position is not valid. In case of multiturn counter option counter is only valid if rotational speed does not exceed ±300 RPM.

If the applied position offset is larger than the actual encoder resolution or smaller than zero, value 0 is set as a new offset.

The position offset will not change. After changing zero position for a bigger value, acceleration error might appear. After every setting of a new position offset, verify or adjust multiturn counter value (if present).

#### Multiturn counter

Multiturn counter preset is available only in multiturn AksIM. It is mapped to the registers 0x14, 0x15, 0x16, 0x17 of bank 0 in a big-endian format. User must first write separate bytes of a new multiturn counter to these addresses. Afterwards, they can be read to verify the proper write operation. At this moment, new multiturn counter is not active yet. To validate it, user must first unlock the command register by writing the KEY. Next register access must be a write of the Command to validate the multiturn counter value.

KEY: value 0xCD to address 0x48 Command for validation of multiturn counter: ASCII 'm' (0x6D) to address 0x49

Programming of multiturn counter larger than 65535 (unsigned) is discarded.

### Self-calibration

Self-calibration of the AksIM is suitable after mounting the readhead. It improves the accuracy of the encoder, which depends on the mounting precision. The user must first unlock the command register by writing the KEY (0xCD) to the Key register (address 0x48). The next register access must be a write of the SelfCal command (0x41) to the Command register (address 0x49) to start the self-calibration procedure. During the procedure, no communication is possible via BiSS interface; the encoder does not respond to any incoming clock cycles. Completion of the procedure is indicated by rapid flashing of LED for 3 seconds. If self-calibration was successful, LED flashes green, otherwise it flashes red. The BiSS interface is then active again. The self-calibration status can be read from a register 0x52. It consists of a two bit counter and two status bits. Counter is incremented at the end of each self-calibration. Error bits indicate success or reasons for failure.

Prior to the self-calibration process, the status should be read from register 0x52. Controller must remember current selfcalibration counter (bits 1:0). After sending the self-calibration command, LED must be observed for completion. If LED is not visible, the readhead should be polled via the BiSS interface until communication with the readhead is established again or wait for the programmed time for completion (default 10 seconds). The self-calibration status register should then be read again. When the self-calibration counter has increased by 1 (compared to the previously read value), the self-calibration function has been completed. If the self-calibration was successful, both status bits (b3, b2) are zero. Additional data from the self-calibration is available with firmware 2.5 and later. This includes the measurement of the ring eccentricity and the placement of the readhead.

Speed and direction of rotation during self-calibration are not important and may be inconsistent. The only requirement is that the shaft makes at least one complete revolution within 10 second of sending the command. If default settings of 10 seconds is not enough, this can be extended up to 40 seconds using register 0x21 (available on encoders with firmware 2.9 and later). If the mechanics do not allow 360° rotation, the length of the calibration arc can be reduced to at least 180°. The new arc length must be set before the self-calibration function is executed. The performance of the self-calibration procedure is optimal at 360° rotation and is reduced if the arc length is reduced.

| Address | Туре | Range                  | Units   | Meaning / usage                                                                             |
|---------|------|------------------------|---------|---------------------------------------------------------------------------------------------|
| INPUT   |      |                        |         |                                                                                             |
| 0x19    | U16  | 180 – 360, default 360 | degrees | Partial arc length for calibration                                                          |
| 0x21    | U8   | 1 – 40, default 10     | seconds | Self-calibration max duration (timeout)                                                     |
| 0x48    | U8   | 0xCD                   | -       | Кеу                                                                                         |
| 0x49    | U8   | 0x41                   | -       | Command                                                                                     |
| OUTPUT  |      |                        |         |                                                                                             |
| 0x1B    | U16  | 0 – 500                | μm      | Ring eccentricity shift from rotation axis centre                                           |
| 0x1D    | U16  | 0 – 360                | degrees | Ring eccentricity angle (phase)                                                             |
| 0x1F    | S16  | -500 – 500             | μm      | Readhead radial shift (positive value - readhead is mounted towards the center of the axis) |
| 0x52    | U8   |                        | bit     | Status - see table below                                                                    |

Self-calibration status register at address 0x52:

| Bit     | Meaning                                                                               |  |  |
|---------|---------------------------------------------------------------------------------------|--|--|
| b7      | Reserved                                                                              |  |  |
| b6      | Calibration was successfully performed, error map is in use.                          |  |  |
| b5      | No correction needed (mechanical installation is perfect).                            |  |  |
| b4      | Arc length parameter (0x19) out of range.                                             |  |  |
| b3      | Calculated parameters out of range. Mechanical installation is not inside tolerances. |  |  |
| b2      | Timeout. Encoder ring did not make a complete turn during 10 seconds.                 |  |  |
| b1 : b0 | Counter                                                                               |  |  |

KEY: value 0xCD to address 0x48

Command for starting self-calibration procedure: ASCII 'A' (0x41) to address 0x49.

Once the self-calibration has been successfully completed, the results are automatically saved into the non-volatile memory. All numerical calibration results are stored in the volatile memory and cleared on the power cycle. To verify if encoder has already been calibrated, read the Self-calibration status byte and verify that bit b6 (0x40) is set.

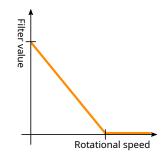


### **Dynamic filtering**

The AksIM-2 encoder uses dynamic low-pass filters to reduce noise in the calculated position value.

The default values are suitable for most applications. However, in some extreme cases, fine tuning is required to achieve optimum performance. For example, in precise applications with low speed and acceleration, the filtering can be increased to increase the resolution.

In contrast, fast and dynamic applications may require a reduction in filtering to reduce delay and increase the bandwidth.


#### **Filter settings**

| Address     | Name                  | Default | Range                   | Description                                                                            |
|-------------|-----------------------|---------|-------------------------|----------------------------------------------------------------------------------------|
| 0x04 - 0x07 | Position filter value | 180     | 0 - 240                 | Maximum value of Position Filter<br>when encoder is standstill.<br>0 = filter disabled |
| 0x08 - 0x0B | Position filter speed | 100     | 0 – 99;<br>100 – 10,000 | Encoder speed when Position<br>Filter is turned off.<br>Below 100: filter is constant  |
| 0x0C – 0x0F | Velocity filter value | 150     | 0 – 240                 | Value of Velocity Filter.<br>0 = filter disabled                                       |
| 0x10 - 0x13 | Velocity filter speed | 0       | 0                       | Not in use                                                                             |

#### **Position filter**

Encoder position value, from every internal encoder cycle, is passed through the low-pass filter. This gives smoother position value and increased resolution when encoder speed is low or decelerating.

Increased Value parameter increases filter strength and reduces cut-off frequency. This value is used when encoder is standstill. With increasing rotational speed, filter is linearly reduced. When rotational speed is equal or bigger than Speed parameter, filter is turned off.



#### **Velocity filter**

Internally calculated velocity (rotational speed) is passed through the low-pass filter. This gives smoother position value on BiSS and UART interfaces. Increased *Value* parameter increases filter strength and reduces cut-off frequency. Filter is constant and not dependent on the rotational speed. Speed parameter is not used and is set to zero.

Changing filter values may cause encoder or closed control loop to become unstable. Use with caution and evaluate all possible situations before keeping the new values.

To store new values into non-volatile memory use the following sequence: KEY: value 0xCD to address 0x48 Command for saving programmed data to a non-volatile memory: ASCII 'c' (0x63) to address 0x49

Saving parameters to non-volatile memory takes 80 ms. During this time position is not valid. In case of multiturn counter option, counter is only valid if rotational speed does not exceed ±300 RPM during save procedure.

APPLICATION NOTE MBD02\_06

#### Reset to factory defaults

Reset to factory defaults will set all programmed parameters to the default values. User must first unlock the command register by writing the KEY. Next register access must be a write of the Command to reset readhead to the factory defaults.

KEY: value 0xCD to address 0x48

Command to reset readhead to the factory defaults: ASCII 'r' (0x72) to address 0x49

Saving parameters to non-volatile memory takes 80ms. During this time position is not valid. In case of multiturn counter option, counter is only valid if rotational speed does not exceed ±300 RPM during save procedure.

After locking the write access, the encoder cannot be reset to the factory defaults.

#### Write protection

Write protection can be used to lock the write access of any writable register in AksIM memory map, except of Bank select register. It is mapped to the register 0x2E of bank 0. Its default value is 0x5A. To lock the write access, user should write any value other than 0x5A. After that, the write access of any register, except of Bank select, will be refused. All registers will behave as a non writable registers.

Command for saving programmed data to a non-volatile memory: ASCII 'c' (0x63) to address 0x49.

Saving parameters to non-volatile memory takes 80 ms. During this time position is not valid. In case of multiturn counter option counter is only valid if rotational speed does not exceed ±300 RPM.

After locking the write access, the readhead cannot be programmed anymore. All registers are still readable.

#### User memory

User memory space comprised of 4 kB of RW registers is mapped between banks 24 and 87. User must first write desired data to these registers. Afterwards, the data has to be stored in a non-volatile memory. To do that, user must first unlock the command register by writing the KEY. Next register access must be a write of the Command to save user data to a non-volatile memory. User memory banks also supports sequential write access. It is possible to write several consecutive registers in one access. For detailed description on sequential write access refer to documentation provided by iC-Haus.

KEY: value 0xCD to address 0x48

Command for saving user data to a non-volatile memory: ASCII 'u' (0x75) to address 0x49

User memory is no longer writable if write access is locked by the user.

Additional BiSS-C register access documentation can be found on BiSS website.



### Head office

#### RLS Merilna tehnika d.o.o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100 E mail@rls.si

www.rls.si

#### **Global support**

Visit our website to contact your nearest sales representative.

#### **Document issues**

| Issue         | Date         | Page | Description                                  |
|---------------|--------------|------|----------------------------------------------|
| 5 17. 4. 2024 |              | 2    | Registers description amended                |
|               |              | 7    | Encoder operating parameters chapter amended |
|               |              | 10   | Self-calibration chapter amended             |
| 6             | 17. 10. 2024 | 10   | Readhead radial shift amended                |

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product or as to any results buyer or its customer might obtain in their use of the product. Buyer should use its own knowledge, judgment, expertise and testing in selecting the product for buyer's application, end-use and/or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE DISCLAIMED AND EXCLUDED. All sales are subject to seller's exclusive terms and conditions of sale which, where the seller is (a) RLS Merilna tehnika d. o. o., are available at https://www.rls.si/eng/salesterms, (b) Renishaw, Inc., are available at https:// www.renishaw.com/legal/en/--42186, or (c) another person, are available on request, and in each case, are incorporated herein by reference, and are the exclusive terms of sale. No other terms and conditions apply. Buyer is not authorized to make any statements or representations that expand upon or extend the environmental limitations and operating parameters of the products, or which imply permitted usage outside of that expressly stated on the datasheet or agreed to in writing by seller.

RLS Merilna tehnika d. o. o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS Merilna tehnika d. o. o. excludes liability, howsoever arising, for any inaccuracies in this document. © 2024 RLS d. o. o.