

MINIATURE

DESIGN

RLM Miniature Incremental Magnetic Encoder

RLM is a component-level encoder system consisting of a RLM readhead and a magnetic scale or ring. It is designed as a position control loop element for embedded motion control applications. The encoder also has a self-diagnostic function for error detection.

The state-of-the-art position detection guarantees a highly repeatable position measurement under wide installation tolerances and temperature ranges. Position information is output in incremental quadrature and parallel, SSI or BiSS C format.

Features and benefits

- Miniature design
- Pin or flexible cable option
- Unique or periodic bidirectional reference mark
- Incremental ABZ TTL or RS422, BiSS C or SSI output
- Suitable for use with linear scales, radial and axial rings
- High system accuracy up to ±10 μm
- ► High-speed operation
- Non-contact and wear-free measuring principle

UNIQUE REFERENCE MARK

SELF-DIAGNOSTIC FUNCTION DATA SHEET RLMD01_16

General information

RLM is a rotary and linear encoder in a miniature housing and can be used in space-constrained applications. The readhead can be ordered with an integral flex cable or with pins only. Position information can be provided either with a unique periodic reference mark or without it.

Choose your RLM2 system

The robust RLM2 readhead is compatible with the RLS incremental scale MS05 as well as the RLS axial and radial rings. You can select the length of the MS05 scale up to 50 m. There is also a wide range of axial and radial incremental rings available.

To ensure safety and reliability, the scale MS05 and the radial rings can be optionally covered with a protective stainless steel foil. Unique or distance-coded reference marks are also available to provide an even more reliable solution.

Encoder variants

RLM2 with pins

RLM2 with pins can be fixed by soldering. It comes with SSI, BiSS C and incremental single-ended outputs ABZ.

RLM2 with flex cable

RLM2 with flex cable can be fixed with mounting brackets. It comes with SSI, BiSS C and incremental single-ended outputs ABZ.

RLM2 with RS422 with flex cable

RLM2 with RS422 flex cable can be fixed with mounting brackets. It comes with differential incremental outputs ABZ (RS422).

Storage and handling

All data given below refer to the readhead only. Complete systems with magnetic scale or ring may have other limitations. For more information, see the MSD01, MR02D02 or MR01D01 data sheet at <u>RLS Media center.</u>

Storage temperature

-40 °C to +85 °C

Operating temperature

Without flex cable: -40 °C to +85 °C With flex cable: -20 °C to +85 °C

Humidity

Up to 70 % non-condensing

The encoder is a mechanically sensitive component. Handle it by its edges, touch it lightly, minimize pressure and eliminate bending while maintaining a secure grip to prevent falls. Maximize cleanliness. When not in use, place it in an ESD protective packaging (box or tray).

Readhead is ESD sensitive - handle with care.

Do not touch electronic circuit, wires or sensor area without proper ESD protection or outside of ESD controlled environment.

Packaging

Less than 20 readheads are individually packed in antistatic boxes. For quantities of 20 pieces or more, the readheads are packed in antistatic trays (see table below). The trays are packed together in a cardboard box (10 trays per box).

Part	Tray size	Box size
Connector option 00	120 units per tray	
Connector options 04 / 15 / 16	16 units per tray	17 trays per box

Dimensions and installation drawings

Dimensions and tolerances are in mm. Dimensions without tolerance values are in accordance with ISO 2768-mK.

RLM2 readhead with pins for direct soldering to PCB (RLM2HD, RLM2DE, RLM2SJ)

* The orientation of the readhead relative to the MS05 magnetic scale or axial/radial ring is essential when using a unique reference mark. For more information, see the MSD01, MR02D02 or MR01D01 data sheet at **RLS Media center.**

Flow soldering not allowed. Hand soldering temperature: $\rm T_{max}$ 260 °C; $\rm t_{max}\,5\,s$

Pinout for RLM2 readhead with pins

Pin	Function	RLM2HD (incremental output)	RLM2DE (BiSS C output + incremental output)	RLM2SJ (SSI output + incremental output)
1	Output	NC	SLO	DATA
2	Input	NC	MA	CLK
3	Output	Error	Error	Error
4	Power	V _{dd} (+5 V)	V _{dd} (+5 V)	V _{dd} (+5 V)
5	Power	GND (0 V)	GND (0 V)	GND (0 V)
6	Output	A	A	A
7	Output	Z	Z	Z
8	Output	В	В	В

RLM2 readhead with flex cable (RLM2HD, RLM2DE, RLM2SJ)

For other (universal) dimensions see **<u>RLM2</u>** readhead with pins.

Electrical connection for RLM2 readhead with flex cable

Pad (flex cable)	Function	RLM2HD (incremental output)	RLM2DE (BiSS C output + incremental output)	RLM2SJ (SSI output + incremental output)
1	Shielding	Case	Case	Case
2	Output	NC	SLO	DATA
3	Input	NC	MA	CLK
4	Output	Error	Error	Error
5	Power	V _{dd} (+5 V)	V _{dd} (+5 V)	V _{dd} (+5 V)
6	Power	GND (0 V)	GND (0 V)	GND (0 V)
7	Output	A	A	A
8	Output	Z	Z	Z
9	Output	В	В	В
10	Shielding	Case	Case	Case

A RENISHAW & associate company

RLM2 readhead with RS422 flex cable (RLM2IC)

Electrical connection for RLM2 readhead with RS422 flex cable

Pad	Function	RLM2IC
1	Shielding	Case
2	Output	Α
3	Output	A-
4	Output	В-
5	Power	V _{dd} (+5 V)
6	Power	GND (0 V)
7	Output	В
8	Output	Z-
9	Output	Z
10	Shielding	Case

For other (universal) dimensions see **<u>RLM2 readhead with pins</u>**.

Mounting bracket

Position of installation holes

Recommended use of M2 fasteners with washers. For more information see **Table** of recommended fastener tightening torques at RLS Media center.

Lθ

Installation instructions

When mounting the RLM2 readhead please make sure that orientation relative to the magnetic scale or ring is correct. All permissible distance and angle tolerances must be strictly complied according to the mounting instructions found at MSD01, MR01D01 or MR02D02 data sheet at **RLS Media center.**

Position of installation holes

Recommended use of M2 fasteners with washers. For more information see **<u>Table of recommended fastener tightening</u>** torques at <u>RLS Media center.</u>

- The magnetic encoder system is sensitive to external magnetic fields. The magnitude of the influence on the magnetic encoder system depends on the magnitude and direction of the external magnetic field. In particular, the rapidly changing stray magnetic fields affect the system and can change its function. Magnetic field strength within 1 mT reduces the accuracy of the system. Field strengths greater than 1 mT could cause the system to malfunction and, as a result, the readhead reports an incorrect incremental position over ABZ or BISS C/SSI channels with the active error output/status. Magnetic field strengths greater than 25 mT will cause irreparable damage to the magnetic scale or ring and must be replaced.
- The RLM2 readhead in considered as a PCBA type due to the exposed connection pins therefore cannot be specified with the IP rating.
- The flex cable requires adequate strain relief to ensure the integrity and avoid side forces that can loosen or damage the flex cable or connector on the controller side. Refer to the **mechanical data** table for the dynamic and static bending radius of the flex cable. The mechanical design in which the RLM2 is integrated must strictly comply with the specifications given.
- The encoder system and flex cable must be appropriately integrated into the application to minimize electromagnetic interference.

Technical specifications

System data

Pole length		2 mm
Maximum measuri	ing length	50 m
System accuracy	Linear application	±10 μm/m / ±20 μm/m / ±40 μm/m
	MS05 magnetic scale	Different accuracy grades of MS05 magnetic scale available. Refer to MSD01 available
		at <u>RLS Media center.</u>
	Rotary application	Axial: Refer to MR01D01 available at RLS Media center.
		Radial: Refer to MR02D02 available at RLS Media center.
Hysteresis		< 3 µm (at 0.3 mm ride height)
Repeatability (unic	lirectional)	< 1 µm
Reference mark		Unique / Periodic
Hand soldering (fo	r pin variant only)	T _{max} 260 °C; t _{max} 5 s
Set-up time		< 50 ms (after power supply voltage is set in operating range)
Resolution		Max. 13 bit (~0.244 μ m) For details refer to the Table of available resolutions.
Maximum speed	Linear application	Refer to MS speed calculator available at RLS website .
	Rotary application	Axial: Refer to speed calculator available at RLS website .
		Radial: Refer to speed calculator available at RLS website.

5 V ±0.25 V – voltage on readhead
< 30 mA without 120 Ω termination < 130 mA with 120 Ω termination (valid for RS422 version)
With reverse polarity protection.
Flex cable: 75 mm, 100 mm or 136 mm. Contact RLS for other lengths.

Mechanical data

Mass	1.4 g (without flex), 1.6 g (with flex)	
Mounting bracket material	Nickel-Silver	
Readhead housing material	ZnAl4Cu1 - zamak 5	
Dynamic bend radius	With flex cable: 20 mm	
	With RS422 flex cable: not recommended	
Static bend radius	With flex cable: 4 mm	
	With RS422 flex cable: 10 mm	
Mating connector for RLM2 flex version	Molex - 51281-1094	
(not provided)	Molex - 52745-1097	
•	Molex - 52746-1071	
	JST - 10FLH-SM1-TB	
	JST - 10FLH-RSM1-TB	

Environmental data

Temperature (readhead)	Operating	With flex cable: -20 °C to +85 °C	
		Without flex cable: –40 °C to +85 °C	
	Storage	-40 °C to +85 °C	
Vibrations (55 Hz to	2000 Hz)	300 m/s² (IEC 60068-2-6)	
Shocks (6 ms)		300 m/s ² (IEC 60068-2-27)	
RoHS		Compliant with EU Directive 2002/95/EC	
Moisture level		MSL6 (IPC/JEDEC-J-STD-020)	
External magnetic field during operation		< 1 mT	
ESD immunity HBM, Class 2 ±2 kV		HBM, Class 2 ±2 kV	

Output types

Incremental ABZ, no line driver output

RLM2DE, RLM2HD, RLM2SJ

Specifications

Output signals	Digital – TTL-level (A, B, Z)	
Reference signal	1 or more square-wave pulse Z	
Saturation voltage hi (I = −4 mA)	$V_{dd} = 0.4 V$	
Saturation voltage lo (I = 4 mA)	0.4 V	
Rise and fall time (c _c = 50 pF)	60 ns	

Timing diagram

Incremental - unique reference mark

Incremental - periodic reference mark

BiSS C output

RLM2DE

Specifications

Output signals	Digital – TTL-level (MA and SLO)
Threshold voltage Hi (MA input)	2 V
Threshold voltage Lo (MA input)	0.8 V
Saturation voltage hi (I = −4 mA) (SLO output)	V _{dd} - 0.4 V
Saturation voltage lo (I = 4 mA) (SLO output)	0.4 V
Rise and fall time (c _c = 50 pF) (SLO output)	60 ns
Type of interface	BiSS C unidirectional (point to point)
Maximum MA clock frequency	8 MHz
Minimum MA clock frequency	670 kHz (SLO line goes high)
Length of ACK	1 to 2 bits
Length of period counter	From 0 to 24 bits (length depends on the selected period counter settings)*
Length of position data	From 3 to 13 bits (length depends on the selected resolution)
Length of status data	2 bits - E1 and E0
Length and type of CRC data	6 bit (inverted bit output, MSB first - polynomial 0x43)
Latency time	0.63 µs at 8 MHz MA freq.; otherwise 4 MA clock periods
Timeout (t _m)	1.5 μs

E1 – E0	2 bit	Error data
CRC5 – CRC0	6 bit	Cyclic redundancy check data; polynomial 0 × 43; inverted bit output

* The period counter is a data field in BiSS C or SSI output that reflects the number of magnetic poles passed during a linear or rotational movement. The period counter feature is especially useful for counting the poles in rotary applications and thus making the incremental ring absolute once the unique reference mark is passed. This can be done if the option of resetting the period counter on the unique reference mark is chosen (options E, F and G under the "period counter length").

SSI output

RLM2SJ

Specifications

Output signals	Digital – TTL-level (CLK and DATA)
Threshold voltage Hi (MA input)	2 V
Threshold voltage Lo (MA input)	0.8 V
Saturation voltage hi (I = −4 mA) (SLO output)	$V_{dd} = 0.4 V$
Saturation voltage lo (I = 4 mA) (SLO output)	0.4 V
Rise and fall time (c _c = 50 pF) (SLO output)	60 ns
Type of interface	SSI (point to point)
Maximum CLK clock frequency	4 MHz
Minimum CLK clock frequency	50 kHz
Length of period counter	From 0 to 24 bits (length depends on the settings chosen)*
Length of position data	From 3 to 13 bits (length depends on the resolution chosen)
Length of status data	2 bits - E1 and E0
Latency time	125 ns at 4 MHz CLK freq.
Timeout (t_)	20 µs

Data	Description
P0 - P7	Period counter value (length depends on the settings chosen)*
S0 - S12	Position inside the period (length depends on the resolution)
E1 - E0	Error data

* The period counter is a data field in BiSS C or SSI output that reflects the number of magnetic poles passed during a linear or rotational movement. The period counter feature is especially useful for counting the poles in rotary applications and thus making the incremental ring absolute once the unique reference mark is passed. This can be done if the option of resetting the period counter on the unique reference mark is chosen (option E, F and G under the "period counter length").

Error for BiSS C and SSI output (RLM2DE and RLM2SJ)	E1	E0			
No error (position data is valid)	1	1			
Amplitude error (position data is not valid) 0					
Possible causes:					
• The distance between the readhead and the magnetic scale is too large.					
• Incorrect orientation of the readhead and the magnetic scale.					
• The readhead is out of alignment with the magnetic scale or the magnetic scale is demagnetised.*					
Frequency error (position data is not valid) 1 0 Possible causes: • Velocity too high**					
Underveltage: EEPPOM Configuration: System error (position data is not valid)					

*The Amplitude error (E1) does not indicate non-optimal installation of the readhead such as accuracy outside of specified or reference mark functionality.

**For max. speed table for axial rings refer to the MR01D01 at <u>RLS Media center</u> or speed calculator for radial rings at <u>RLS website</u>. For max. speed table for magnetic scales refer to the MSD01 at <u>RLS Media center</u>.

DATA SHEET RLMD01_16

Incremental, RS422

RLM2IC

Specifications

Output signals	3 square-wave signals A, B, Z and their complementary signals A–, B–, Z–
Reference signal	1 or more square-wave pulse Z and its complementary pulse Z–
Signal level	Differential line driver according to EIA standard RS422
Permissible load	$Z_0 \ge 100 \ \Omega$ between associated outputs

Timing diagram

Recommended signal termination

Complementary signals not shown

Error output

RLM2HD, RLM2DE and RLM2SJ

To enable successful error diagnosis, different types of errors are signaled on the error line with a PWM formatted code as described below. In case of an amplitude or frequency error, the PWM cycle frequency is approximately 16.5 Hz (cycle duration: 60.7 ms).

Failure mode	Error output	Possible causes
No error (position data is valid)	High	-
Amplitude error (position data is not valid)	Low: 75 % High: 25 %	 The distance between the readhead and the magnetic scale is too large. Incorrect orientation of the readhead and the magnetic scale. The readhead is out of alignment with the magnetic scale or the magnetic scale is demagnetised.*
Frequency error (position data is not valid)	Low: 50 % High: 50 %	Velocity too high**
System error (position data is not valid)	Low	Undervoltage EEPROM Configuration

* The Amplitude error (E1) does not indicate non-optimal installation of the readhead such as accuracy outside of specified or reference mark functionality.

For max. speed table for axial rings refer to the MR01D01 at **RLS Media center or speed calculator for radial rings at **RLS website**. For max. speed table for magnetic scales refer to the MSD01 at **RLS Media center**.

If an amplitude error occurs, the conversion process is stopped and the incremental output signals are terminated. An amplitude error excludes the possibility of a frequency error.

The error output is an open collector type with a built-in pull-up resistor. It can be used in a "wired-OR" digital logic configuration with other error signals in the system.

Part numbering

	<u>_</u>	RLM	2	HD	Α	13	BB	Α	00	Α	00
Pole length											
2 - 2 mm											
Output type											
	antal na lina drivar EV										
UE - BISS C + Incremit	line driver EV										
IC Incremental PC											
SI - SSI + Increment	al, no line driver, 5 V										
Period counter lengt	h										
A - 0 bit (default)	E - 8 bit, reset by reference	e mark									
B - 8 bit	F - 12 bit, reset by reference	e mark									
C - 12 bit	G - 24 bit, reset by referen	ce mark	2								
D - 24 bit											
T				Max Speed (°alcu	lators					
Interpolation factor				Max Speed	Laicu		1				
13B - 8192 (0.244 μn	n) 09B - 512 (3.90	6 µm)		D10 - 100	(20 j	µm)					
12B - 4096 (0.488 µn	n) D50 - 500 (4 µn	n)		D08 - 80	(25)	µm)					
11B - 2048 (0.977 μn	n) D40 -400 (5μn	n) 0		06B - 64	(31.	250 µm)					
106 - 1600 (1 µm)	0.25 = 520 (0.25)	0 µm) 3 µm)		05B - 32	(62)	μπ) 500 μm)					
10B - 1024 (1.953 µn	n) D20 - 200 (10 µ	m)		04B - 16	(125	5 um)					
1D0 - 1000 (2 µm)	D16 - 160 (12.5	00 μm)		03B - 8	(250) µm)					
D80 - 800 (2.500 μn	n) 07B - 128 (15.6	25 µm)				•					
For DPI resolution see	Table of available resolu	itions.									
Minimum odro onno				Max	Snoo	d Calcula	tors				
winimum edge sepa	ration			IVIAX	spee						
K - 0.07 μs (15 MHz)	E - 4 µs (0.25 MHz)										
A - 0.12 µs (8 MHz)	F - 5 μs (0.2 MHz)	The c	usto	mer's contro	ller m	ust supp	ort the	<u>.</u>			
$\mathbf{C} = 1 \text{ us} (1 \text{ MHz})$	H = 20 µs (0.05 MHz)	selec	ted e	dae separat	ion ti	ime even	if the	2			
D - 2 µs (0.5 MHz)	11 20 μ3 (0.05 Miliz)	enco	der is	used below	the m	navimum -	sneed	-			
,		cricov		used selow	the fi	axinan	speca				
Connector											
00 - Pins only	15 - Fle	x cable,	leng	th 136 mm							
04 - Flex cable, lengt	h 75 mm 16 - Fle	x cable,	leng	th 100 mm (F	RLM2	(C only)					
Reference mark											
A _ With reference r	nark										
A - With Telefence I Magnetic scale or i	ring must be ordered with refer	ence ma	rk Ifr	required the c	over fo	oil can be in	stalled	over	the reference	e mark	
B - No reference set	nsor	crice ma	110.111	equired, the e			istanca	over			
C - Periodic referen	ce impulse as per scale pitc	h (everv	/ 2 mr	m)							
Reference periods	correspond to pole length of m	agnetisa	ation. I	, Magnetic scale	or rin	g must be	ordered	d with	no referenc	e mark.	
		-		-							
Special requirements	S										
00 - No special requi	rements (standard)										

05 - DPI version

Not all part number combinations are valid. Please refer to the table of available combinations on the next page for available options.

Series	Output type	Period counter length	Interpolation factor	Minimum edge separation	Connector	Reference mark	Special requirements
	IC	04B	XXX ^a	K/A/B/C/D/E/ F/G/H	15 / 16	A/B/C	
			04B	A/B/C/D/E/F /G/H			
			03B	B/C/D/E/F/ G/H		влс	
	RLM2 HD	A	XXX ^a	K/A/B/C/D/E/ F/G/H		A/B/C	00 / 05
RLM2			04B	A/B/C/D/E/F /G/H		D./C	
DE / SJ		03B	B/C/D/E/F/ G/H	00/04/15	ВЛС	_	
		XXX ^a	K/A/B/C/D/E/ F/G/H	00704715 A/	A / B / C		
	DE / SJ	DE/SJ A/B/C/D/E /F/G	04B	A/B/C/D/E/F /G/H			
	03B	03B	B/C/D/E/F/ G/H		в/с		

Table of available combinations

* Please check the table on the next page for available interpolation factors.

For the part numbering of the MS incremental magnetic scale or the MR radial and axial incremental magnetic ring, refer to data sheets MSD01, MR02D02 and MR01D01 at **RLS Media center**.

Available resolutions

Table of available resolutions

		Resolu		
Part number	Interpolation factor	In µm with 2 mm poles	CPI (counts per inch 2,032 mm) ¹⁾	DPI (pulse per inch 2,032 mm) ²⁾
13B	2 ¹³	0.244140625	102,400	25,600
12B	2 ¹²	0.48828125	51,200	12,800
11B	211	0.9765625	25,600	6,400
2D0	2000	1	25,000	6,250
1D6	1600	1.25	20,000	5,000
10B	2 ¹⁰	1.953125	12,800	3,200
1D0	1000	2	12,500	3,125
D80	800	2.5	10,000	2,500
09B	2 ⁹	3.90625	6,400	1,600
D50	500	4	6,250	1,562.5
D40	400	5	5,000	1,250
D32	320	6.25	4,000	1,000
08B	2 ⁸	7.8125	3,200	800
D20	200	10	2,500	625
D16	160	12.5	2,000	500
07B	27	15.625	1,600	400
D10	100	20	1,250	312.5
D08	80	25	1,000	250
06B	26	31.25	800	200
D04	40	50	500	125
05B	2 ⁵	62.5	400	100
04B	24	125	200	50
03B	2 ³	250	100	25

Resolutions calculation

Resolution [um]	Pole length [µm]	2000			
Resolution [µm]	Interpolation factor	Interpolation factor			
For ring applicati	ons:				
CPR – Counts per revolution (resolution)					
Resolution [CPR] = Pole number* x Interpolation factor					
PPR – Pulses per revolution					
Resolution [PPR] = $\frac{\text{Resolution [CPR]}}{4}$					

Resolutions calculation for CPI/DPI

Resolution [µm]	Pole length [µm]	2032
	Interpolation factor	Interpolation factor
Resolution [CPI] :	Inch [µm] =	

esolution [CPI] = ______ Resolution [µm]

> = Inch [μm] × Interpolation factor Pole length [μm] =

 $= \frac{25400 \times \text{Interpolation factor}}{2032}$

Resolution [DPI] = $\frac{CPI}{4}$

*See pole numbers in the MR01D01 or MR02D02 data sheet at **RLS Media center.**

DATA SHEET RLMD01_16

Accessories

USB encoder interface (Quadrature output ABZ) <u>E201-9Q</u>

Connector adapters FFC to DB9 (connect to E201): RLACC001 (RLM2IC) RLACC002 (RLM2HD) RLACC003 (RLM2DE and RLM2SJ) RLACC004 (RLM2IC)

USB encoder interface (BiSS C and SSI output) <u>E201-95</u>

Mounting bracket RLMMB01

Line driver board for incremental encoders **LDB01**

Head office

RLS Merilna tehnika d. o. o.

Poslovna cona Žeje pri Komendi Pod vrbami 2 SI-1218 Komenda Slovenia

T +386 1 5272100 E mail@rls.si

www.rls.si

Global support

Visit our **website** to contact your nearest sales representative.

Document issues

Date	Issue	Page	Description
5. 1. 2022	10	General	Redesign, general amendment
6. 10. 2022	11	General	Repeatability, DPI calculation, dimensions and installation drawings
			amended, humidity and external magnetic field data added
3. 4. 2023	12	11	Error for BiSS C and SSI output table amended
15. 9. 2023	13	13	Menu (button) Max Speed Calculators added
13. 10. 2023	14	8	Set-up time amended
25. 1. 2024	15	7	Positive direction chapter added
6. 9. 2024	16	16	LDB01 added

This product is not designed or intended for use outside the environmental limitations and operating parameters expressly stated on the product's datasheet. Products are not designed or intended for use in medical, military, aerospace, automotive or oil & gas applications or any safety-critical applications where a failure of the product could cause severe environmental or property damage, personal injury or death. Any use in such applications must be specifically agreed to by seller in writing, and is subject to such additional terms as the seller may impose in its sole discretion. Use of products in such applications is at buyer's own risk, and buyer will indemnify and hold harmless seller and its affiliates against any liability, loss, damage or expense arising from such use. Information contained in this datasheet was derived from product testing under controlled laboratory conditions and data reported thereon is subject to the stated tolerances and variations, or if none are stated, then to tolerances and variations consistent with usual trade practices and testing methods. The product's performance outside of laboratory conditions, including when one or more operating parameters is at its maximum range, may not conform to the product's datasheet. Further, information in the product's datasheet does not reflect the performance of the product in any application, end-use or operating environment buyer or its customer may put the product to. Seller and its affiliates make no recommendation, warranty or representation as to the suitability of the product for buyer's application, use, end-product, process or combination with any other product or as to any results buyer or its customer might obtain in their use of the product. Buyer should use its own knowledge, judgment, expertise and testing in selecting the product for buyer's application, end-use and/or operating environment, and should not rely on any oral or written statement, representation, or samples made by seller or its affiliates for any purpose. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH IN THE SELLER'S TERMS AND CONDITIONS OF SALE, SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED WITH RESPECT TO THE PRODUCT, INCLUD-ING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE, WHICH ARE DISCLAIMED AND EXCLUDED. All sales are subject to seller's exclusive terms and conditions of sale which, where the seller is (a) RLS Merilna tehnika d. o. o., are available at www.rls.si/customer-service, (b) Renishaw, Inc., are available at www. renishaw.com/Shop/legal/en/--42186, or (c) another person, are available on request, and in each case, are incorporated herein by reference, and are the exclusive terms of sale. No other terms and conditions apply. Buyer is not authorized to make any statements or representations that expand upon or extend the environmental limitations and operating parameters of the products, or which imply permitted usage outside of that expressly stated on the datasheet or agreed to in writing by seller.

RLS Merilna tehnika d. o. o. has made considerable effort to ensure the content of this document is correct at the date of publication but makes no warranties or representations regarding the content. RLS Merilna tehnika d. o. o. excludes liability, howsoever arising, for any inaccuracies in this document. © 2023 RLS d. o. o.